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Measurement and Calibration of a Universal
Six-Port Network Analyzer

WEIGAN LIN, SENIOR MEMBER, IEEE, AND CHENGLI RUAN, MEMBER, IEEE

Abstract —A generaf theory of measuring mrdtiport networks is pre-

sented in this paper. In order to measure microwave multiport networks

conveniently a method involving the stepwise reduction of the order of the

network under test is suggested. All fornndas for calibrating and measnring

the triple six-port network analyzer (TSPNA), which is a universal six-port

network anafyzer, are given withont any ambiguity. The procedures for

calibration and measurement are very simple. No standard three-port

network is needed to calibrate the six-port system. Finally, the error

caused by nonideal isolation is discnssed.

I. INTRODUCTION

sINCE THE six-port theory presented by Hoer and

Engen [1], [2], in 1972, microwave measurement theory

and techniques have made great progress. With the devel-

opment of computer-aided measurement, microwave mea-

surement techniques have become more accurate. A dual

six-port network analyzer (DSPNA) was proposed by Hoer

[3] in 1977. Since then many scholars [4]-[6] have been

engaged in the calibration of the DSPNA and the measure-

ment of two-port networks, and the calibration of the

DSPNA has been greatly improved.

In the field of microwave techniques a great variety of

microwave multiport networks are used. How to measure

all the scattering parameters of a multiport network is a

problem encountered in our research.

The single-port network can be measured with a single

six-port network analyzer (SSPNA), and a two-port net-

work with a DSPNA. Can we measure a multiport network

with a multi-six-port network analyzer (MSPNA)? Further,

is there a universal six-port network analyzer (USPNA)

which can be conveniently used to measure a variety of

microwave networks? Li [7] has suggested an isolated

N-six-port network analyzer (INSPNA). Speciale has de-

veloped a method for determining the n X n complex

scattering matrix of a multiport network in a single mea-

surement [8]. This method requires an unconventional type

of multiport network analyzer. A more conventional

method of performing such measurements on a two-port

automated network analyzer requires perfecting matched
loads of (n – 2). This requirement cannot be met in prac-

tice with sufficient accuracy. A rigorous technique for

measuring the scattering matrix of a multiport network

with a two-port network analyzer was described in [9]. The
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key to calibrating measurements of the scattering matrix of

multiport networks with a two-port network analyzer is the

renormalization transforms of the scattering parameters.

The renormalization transforms were originally derived by

Woods for networks with up to six ports [10] -[12]. A

generalized form of the renormalization transform was

given in [13]. Dropkin simplified the transform and pointed

out that in some cases the inverse required by the trans-

form may not even exist [14].

In this paper a general theory of measuring multiport

networks is presented and a method of reducing the order

of the network under test step by step (ROM) is suggested

for measuring microwave multiport networks conveniently.

All associated equations are linearized without any am-

biguity. The calibration and measurement of the triple

six-port network analyzer (TSPNA) are discussed in detail,

and it is shown that the TSPNA is a USPNA. Using the

ROM method with the TSPNA one can measure all the

scattering parameters of any multiport network, thereby

avoiding inverse operations and saving connection time

when n = 3, 4.

It is assumed that all the isolators used in the DSPNA

and TSPNA discussed in the following (see Figs. 2 and 3)

are ideal ones. Nonideal isolators used in the six-port

system will introduce errors. The isolation property of a

nonideal isolator can be described by an isolation factor

1 = S12&/S11. The relationship between the error factor

and the isolation factor is given.

II. GENERAL THEORY

An N-port network can be characterized

scattering matrix, that is,

b=Sa

by an nxn

(1)

where b is a reflected wave column matrix, a is an

incident wave column matrix, and S is an n x n scattering

matrix. Assuming that a load with a reflection coefficient

of k is connected to the k th port of the N-port network,

the ~-port network and the load become an (N – 1)-port

network(~), the superscript k denoting the elimination of

the kth port of the N-port network. By substituting the

relation

a~ = l?~b~ (2)

into (l), the n X n matrix S is reduced to an (n – 1)X

(n – 1) matrix S(k). The matrix S(~j is obtained by elimi-

nating the k th row and k th column of the matrix S and

substituting the element S~jk) for the element S,, of the
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Fig. 1. An N-port network becomes an(N–l)-port network byelimi-
nating the kth port of the N-port network.

matrix S. The relationship between S}JkJ and Sij is

rks,kskl
$;) = s,, +

1 – Skkrk‘
i, j, k=l,2,. ... n

In order to affirm

the two matrices S

changed.

i,j+k. (3)

the relationships between elements of

and S(k), the subscripts of S~lkJ are not

An N-port network can construct n different (N – l)-

port networks by eliminating one of the n ports of the

network by means of the method described above. For a

single k, (3) denotes (n – 1)2 S},k)s; when k equals

1,2,. ... n successively; (3) denotes n ( n – 1) 2S}Jk),s.If all

scattering parameters of (N – 1)-port networks formed by

the N-port network are found, all scattering parameters of

the N-port network can be obtained from (3) in principle,

(It will be seen that the scattering parameters of the

A~Sr = B~

S,= (rlsll, r2s22,”””, rnsnn)’

735

N-port network cannot be found by the ROM method

when n < 3.)

The first step is to solve for diagonal elements of the

matrix S. Connecting a load with a reflection coefficient of

rk at the k th port of the N-port network, thus eliminating

the k th port, we make the N-port network become an

(N - 1)-port network(’) (Fig 1). At the ith port, i #k, (3)

becomes

rks,kskl
Sy = s,,i-

I– skkrk’
i+k. (4)

Similarly, eliminating the ith port we obtain an (N – l)-

port network(’). And at the kth port,

r,sklslk
s&2=$,k+1_sr~ k#i. (5)

ZLz

From (4) and (5), S,~Sk, is found to be

si~s~,” (Sjk) – Slt)(l – &krk)/rk

‘= (sj~ - s~k)(l- A$’ltrl)/rl. (6)

From the last eqUaltiOn of (6) we obtain

(I- r,s:k))rkskk --(1- ‘ksi~))rlsu = ‘ks,fi) - ‘i%k),

i, k=l,2.,. ... n; i#k (7)

where rk, r, are reflection coefficients of two known loads.

S(k) and S# are the diagonal scattering parameters of

b~th the (N – 1)-port network(k) and the network(i), re-

spectively. Because ~~~ and S~k) are known by measure-

ment, (7) represents a set of linear equations of the diago-

nal elements of the scattering matrix S of the N-port

network. The number of equations in (7) is only }n ( n – 1),

when i and k vary from 1 to n, respectively. The number,.
of diagonal elements in the N-port network 1s n when

~n(n – 1) > n; thalt is, when n > 3m all diagonal elements

of the matrix S can be found from (7).

When n >3 the number of equations in (7) is more than

that of the diagonal elements. The surplus equations are

not independent. For the sake of convenience, making k

and i equal 1 and 2, 2 and 3,. “ “, n and 1, respectively and

successively, we obtain n equations altogether. Writing the

equations in matrix form, we have

o

I
o I – r3sg) – I + r2sg)

Ad= ““”

o 0 0
– 1+ rns$) o 0

. . . 0

. . . 0

. . . –l+rn-1s:21, n_1.

. . . 1– rlsp 1

(8a)

(8b)

(8c)

(8d)
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TABLE I

Number of ports 2 3456 n NOTE

Number of whole

equations 2 12 36 80 150 H(n –1)2 Eq. (3)

Number of SLL 2 3456 n Diagonal
elements

Number of equations

for SA~ 1“ 3 6 10 15 ;n(n –1) Eq. (7)

Number of S,,,
i+j 2 6 12 20 30 n(n –1) Nondiagonal

elements

Number of equations

for s,, O* 3* 12 30 60 *n(iz–l)(?2–2) Eq. (10)

The asterisk indicates that the number of eauatlons is less than that of the

unknown S,,.

Equation (8) comprises a set of linear equations of the

diagonal elements. Using Cramer’s rule Skk is found to be

1“
Skk = ~ ~ BdlAd,k/det Ad, k=l,2,... , n (8e)

kj=l

where t denotes the transpose operation, B~J is an element

of the column matrix Bd, and AdJk iS an algebraic comple-

mentary minor of the element of the jth row and the k th

column of the matriX Ad.

The second step is to solve for the nondiagonal elements

of the matrix S. Substituting (8e) into (3) we obtain a

product, Sl~SkZ, of a couple of nondiagonal elements. The
number of all products is in (n – 1). We have used n (n – 1)

equations in solving (8) for the diagonal elements of the

matrix S, so there are n (n – 1)( n – 2) equations remaining

on nondiagional elements. Using (3) we can transform the

n (n – l)(n – 2) equations into linear ones.

From (3) we have

rks,ksk, = (s};) - s,, )(1- rkskk), k #i, j. (9)

By retaining the constant k and exchanging subscripts i

and j of the scattering parameters in (9), we get another

equation (see the Appendix). Multiplying both sides of the

equation obtained by (9), respectively, we have

S;k)sz, + S:;)SJ, ~ S{:)S>;) + S SlJ Jl
-(s$k)- s,,)(s};)-s,j)>

i, j=l,2,, ... n; i+j; i,j+k. (lo)

Equation (10) represents a set of linear equations of the

nondiagonal elements of the matrix S. The matrix S has

n (n – 1) nondiagonal elements. The number of equations

given by (10) is ~n(n – l)(n –2), when ~n(n – l)(n –2) >

n (n – 1); that is, when n >4, all the nondiagonal elements

of the matrix S can be found.

Since (10) is symmetrical, S,~ and Sj, can be found in

couplet. Substituting h in (10) for k, we have

s(~)s + s(~)s = s$wy + s. sJI 1] lJ J1 lJ JI

-(s(’) -s,,) (s};) -s,,)!Zz

i, jcl,z,... ,n; i+j; i,j+h. (11)

When h + k, from (10) and (11) S,J and ,SJ, are found to

(12a)

(12b)

E(k) == S:})S}$) – SIJS,i – (S:k) – S1l)(S}:) – SIj) (12c)

E;’) = sfky – S,JS’,– (Sy) – St,)(s’fi) – s’,j ,

i, j=l,2,. ... n; i+j; i,j#k #h. (12d)

For convenient calculation, we usually select i <j, h =

k+l=j+2. When i>3, j>n–1, k–n substitutes for

k, and h – n for h. When determining S1,. _ ~ and S._ ~,~

we select k = n, h = 2; for S1,. and S.,l, select k = 2 and

h=3; for Sl,n_l and S,–l, z, select k=n and h=l; for
S2 ~ and Sn, z, select k = 1 and ii = 3. Thus S12 and SZ1.

s’ ...,13> S1. and S.l, S23 and S32, S,J and SJ, through

!-1,. and %, ,,–~ can be found successively.

In the process of solving the diagonal and nondiagonal

elements of the matrix S, we can see that there is not

always a definite solution for any integer n. The relation-

ships between the number of network ports, the number

of unknown S,J, and the number of equations on S,,

are given in Table I. From this table we can see that

the number of linear equations of diagonal elements is

in ( n – 1), and the number of linear equations of nondiag-

onal elements is in ( n – 1)( n —2); altogether they are

$rr(n – 1)2. When ~n(n – 1)2 > n2, all elements of the ma-

trix S can be found by the ROM method, and there is no

ambiguity. For example, when n = 4 the four-port network

will be reduced to three triple-port networks to be mea-

sured, provided all scattering parameters of the three

triple-port networks have been found. The scattering pa-
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Fig. 2. A scheme of DSPNA.

rameters of the four-port network will be obtained from

(7) and (10).

Multiport networks with more than four ports can be

measured by reducing them step by step to three-port

networks. From Table I, however, we can see that the

number of equation for S~~ is 1 when n = 2, but the

number of unknown S~~’s is 2; the number of equations

for S,l is O, but the number of unknown S,j’s is 2; the

number of equations for S~~ is the same as the unknown

S~~’s when n =3, but the’ number of equations for S,l

(i # j) is just half that of the unknown SZJ’S. So two-port

and three port networks cannot be measured by the ROM

method. The measurements of two-port networks and

three-port networks will be discussed below.

III. CALIBRATION AND MEASUREMENT OF DSPNA

A scheme of the DSPNA is shown in Fig. 2. The

DSPNA is composed of a divider, switches, attenuators,

isolators, matching loads, and six-port networks. The two-

port network under test with scattering parameters S,,,

i, j =1,2, is connected at reference planes 1 and 2. rl and
r~ are the reflection coefficients seen in the six-ports Spl

and Spz from reference planes 1 and 2, respectively, and c1

and C2 are the incident waves coming into the two-port

network under test from the source. rl, rz and the ratio of

Cz to c1 are system constants.

Here Spl and Spz are two six-port networks being cali-

brated. For the method of calibrating six-port networks,

see [15]. Here we shall discuss only the calibration of the

DSPNA system.

The signal coming from the source is divided into two

parts and comes into the right and left branches of the

DSPNA, respectively.

The two branches are symmetrical in structure. The

attenuators are used for limiting the power so as not to

exceed the dynamic range of the power meters of the

six-ports. The isolators are ideal, which guarantees that (i)

regardless of the state the switch K, is in, the reflection

coefficient r, seen in the six-port Spl from the reference

plane i will always be a constant and (ii) regardless of

which unknown two-port network is connected at refer-

ence planes 1 and 2, the ratio of Cz to c1 will always be a

737

constant [16]. The following equations are derived follow-

ing the method in the literature [16].

When switch K1 connects with attenuator Al (making

the six-port Spl cc,nriect directly with the source, called

switch KI closed), whereas switch K ~ connects with the

matching load (making Spz open with the source, called K ~

open), the reflection coefficient rlP which is measured by

spl is

rlP ==(Sll – r2A)/(1– r2s22)

A=’S11S22– S12S21. (13)

When KI is open a,nc[ K ~ closed, the reflection coefficient

r2P measured by sp2 is

r2P =: (s22 – rlA)~(l – rlsll). (14)

When KI and Kz are both closed, the reflection coeffi-

cients measured bf the two six-ports are denoted by the

subscript a, e.g. 1’1(, and I’2.. From the superposition

theorem they are

(15)

S22 – rlA + s21c1/c2
rzu ==-

I + r2s21cl/c2 – rlsll”
(16)

Using (13)–(16), the system constants of the DSPNA can

be calibrated. The calibration steps are as follows.

First, the measurement port of Spl connects directly with

that of sp2, that is, a transmission line of zero length (or a

line with arbitrary length, thus the formulas will be slightly

different), as a standard two-port network is connected at

reference planes 1 and 2. When KI is closed and K* open,

17{P is measured by Spl from (13), that is,

r[P = r2. (17)

Then, when KI is open and Kz closed, r4P is measured

by Spz from (14), that is,

r~P = rl. (18)

Finally, when KI and K2 are both closed, 17{. is mea-

sured by Spl; from (15) the ratio of C2 to c1 is obtained

(there are eight power readings, but only four of them are

used):

~2/c~ = (r{. – r2)~(l – rlr(a). (19)

Thus under three switch states, the three system constants

rl, r~, and C2/Cl are obtained from 16 power readings.

Next, connect the two ports of the unknown two-port

network with measurement ports of Spl and sp2, respec-

tively. The measurement steps are the same as those of

calibrating a DSPNA:

(i) when K, is clclsed and K, open, r,, is measured by

SPI;

(ii) When K, is open and K2 closed, r2P is measured by

SP2;

(iii) when KI and K2 are both closed, r,. and r2. are

measured by SIX and SP,, respectively.
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By substituting 171P,I’JP, rla, and 172ainto (13)-(16), all

scattering parameters of the two-port network under test

can be determined:

S22= ( r2p – r,8,B2)/B3 (20d)

c1 ‘lapi=_ -rv’

C2 1 – rlrla
(20e)

Fig, 3. A scheme of TSPNA

C2 ‘2a – ‘2p
p2=–

c1 1 – r2rza
(20f)

13=1- r1r281p2. (20g)

In the measurement process it is not necessary to change

the direction of the two-port network under test. In three

switch states, 16 power readings are obtained and all S,j, i,

~ =1,2, are determined. The procedures for calibration and
measurement are very simple.

IV. CALIBRATION AND MEASUREMENT OF TSPNA

In order to find all the scattering parameters of an

unknown three-port network, a TSPNA can be used. The

TSPNA system is shown in Fig. 3. Compared with the

DSPNA, the TSPNA has just three branches, each of

which has the same structure as the two branches of the

DSPNA. The associated devices have the same function as

in the DSPNA. The difference is that the TSPNA has a

three-branch divider.

The unknown three-port network is connected at refer-

ence planes 1, 2, and 3. 1’1, r2, 173, cl, C2, and C3 are

system constants with the same definitions as in Section

III. The isolators are ideal, so rl, r2, and r3 do not change

when switches change over, and the ratios of Cz and C3 to

c1 remain constant when the properties of the network

under test change. The calibration steps are as follows.

First, the measurement port of Spl is directly connected

to that of sp2, so Spl and sp2 constitute a DSPNA. Accord-

ing to the calibration method of the DSPNA as described

in Section 111, 171,172,and C2/cl can be obtained.

Then, let the measurement port of Spl be directly con-

nected to that of Spq; as described above, r~ and Cq/cl can

be obtained. Because the isolators used in the TSPNA are

ideal, the TSPNA has only five system constants. By

directly connecting Spl to sp2 and SP3, respectively, and

measuring under five switch states, 20 power readings are

obtained and’ the five system constants can be found from

(13)-(19). The calibration procedure is very simple, and no
standard three-port network is needed to calibrate the

system constants.

The measurement steps of three-port networks are as

follows. After successively calibrating the three six-ports

Spl, sp2, sp3, and finding the five system constants, we

connect the unknown three-port network to the TSPNA,

e.g. connect the three ports of the unknown network to the

associated three measurement ports of the TSPNA. First,

we measure the three-port network according to the ROM

method.

1) Let K2 and Ks be closed, and KI open. The first port

of the three-port network under test equals the connection

of a load with the reflection coefficient of 171(which is

composed of attenuator Al, isolator 11, and six-port Spl ).

The three-port network and the load (rl ) constitute a

two-port network [1] which is measured by a DSPNA

composed of six-ports Spz and sp~. From (20) S~~),. -., S~~)

can be obtained. The subscripts of each quantity in (20)

should be suitably substituted.

2) Let KI and KS be closed, and K2 open. The second

port of the three-port network is equal to the connection of

a load with the reflection coefficient of r2 (which is

composed of A2, 12 and sp2) and it is measured by a

DSPNA composed of Spl and sp3. Then Sfi),. . . . S~~) can

be obtained.

3) Similarly, let KI and K2 be closed, and Kq open.

S(3) can be found by Spl and sp2.s~;),. . . . 22

So far 12 scattering parameters S~~), i, j, k =1,2, 3 and

i, j # k, have been obtained. From (8) the diagonal ele-

ments Sll, S22, and S33 can be found. Equation (10) gives

three linear equations for the nondiagonal elements S,,,

i # j, as follows:

sj;’s12 + s#s21 = SJ;)SJ:) + S12S21

- (SJ~) - Sll)(S\~) - S22) (21a)

s#N13 + S}:)S31 = Sl;)s:) + S13S31

- (S# - S,3)(S~) - S,,) (21b)

SJ;’S23 + sj;N32 = sj;lSJ;) + S23S32

- (s;;) - s22)(sJ;~ - S33). (21C)

In order to find the solutions to (21) without any ambigu-

ity, we must measure once more to find another three

linear equations for the nondiagonal elements.

4) Let Kl, K2, and K3 all be closed. Then Spl, SP2, and

sp~ constitute a complete TSPNA. Each six-port yields a

reflection coefficient, denoted by the subscript a; that is,

rla is measured by Spl, r2a by sp~, and r3a by sp3. Set

r,. = b,/a,, i=l,2,3. (22)
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Substituting (22) into(l), we have TABLE II

(S1,- r,a)al+ &2~2+ ~1,~, = o (23a) Number of ports — 3 4 5
Number of connections

S21~1+(S22– r2a)~2+S23a3 = O (23b) Two-port netwc,rk analyzer 3 6 10
ROM 1 4 10

~31~1+&a2+(&- r3a)a3= o (23c) —

where al, a2, and a3 are the results of cl, Cz, and Cq
where

together and can be found with the superposition theorem.

Using a signal flow graph for the three-port network RI= (rla --5711)( I - s,,r, – s,,r,
under test at the connected three references of the TSPNA,

al, a z, and a ~ can be easily found from the signal flow + r2r3(s22s33– S23S32))
graph to be - (I -- r,arl)(l - s33r3)sgk2/cl
al= C1(I– (s22r2+ s33r3+ r2r3s23s32)+ r2r3s22s33)

+,c2(s12r1(l– s33r3)+ r1r3s13s3J

+ C3(s13r1(l– s22r2) + r1r2s12s23) (24a)

a2 = c1(s21r2(l– s33r3)+ r2r3s23s3J

+ C2(1– (sllrl + s33r3+ r1r3s13s31)+ r1r3s11s33)
+ C3(s23r2(1– sllrl )+ r1r2s13s21) (24b)

a3 = Cl( s31r3(1– s22rJ+ r2r3s21s32)
+ C2(S32173(1– sllrl) + r1r3s12s3J

+ C3(1– (sllrl + s22r2+ r1r2s12s2J+ r1r2s11s22)
(24c)

– (1-- rlar,)(l - s,2r2)s/;k3/cl

R2= (r2a -- S22)( I - sllrl - s,,r,

+ rl~~(sllsq~ – sl~sql))

– (1 -- ~2ar2)(l – s,,r,)s$kltc,

- (1-- ~,ar,)(l- sllrl)sj:)c,ic,

R3=(r3a--s33 )(1 – sllrl – s,,rl

+ rlrz( S11S22– S12SJ)

– (1 - r,ar, )(l – s,,r2)s#)c1/c,
.,

– (1 -- ]~~ar~)(l – s11rJs&c2/ca.
where the graph determinant is neglected, because it will

be eliminated in the following operation. Substituting (24) Combining (21) and (25) and writing them in matrix form,

we have

(26a)

(26b)

(26c)

MSC = N (27a)

S’= (s~~, s~3, s21, s23, s31, s32)’= ($, &.s3, s4>&, s6)t (27b)

iv= (P1,1’2,f’3,R1,R2,Rq)’=(N~, N2,N3,N4,N:),N6)’ (27c)

PI= S};wj:) + S12S21– (Sy - SIJ(S$’ - S22) (27d)

P2 = Sgxy + SJ31 – (s:) - Sl,)(sg) - S33) (27e)

P3 = Sj~)SJj) + S23S32 – ( S$) – $2) ( ‘Ji) – ’33) (27f)
.,

~$) o ~f:) o 0 0

0 $(;) o 0 ;yf;) o

0 0 0 S$’ o S$;’
M= i“(27g)

(I- s,,r,) r,sj;) (I- s22r,) r,sj;) o 0 0 0

0 0 (I- s,,r,)rlsf;) (I- sl,rl) r,s$) o“ o

0 0 0

into (23), we find another three linear equations for the

nondiagonal elements:

(1- s,3r3)r2s\W12 + (1 - s22r2)rW?s1, = R, (Zsa)

(1- s,3r3)r1s&s21 + (1 - sllrJr,s$& = R2 (25b)

(1- s22r2) r,s#s31 + (I - sllr,) r2s#s32 = R3 (25c)

o (I- s,zr,~ rlsi;) (I- sllrljr,sji) 1

Using Cramer’s rule from (27) we have

6

S1 = ~ Nh114k,/det M, 1=1,2,’ ”s,6 (28)
h=l

where Mkl is an algebraic complementary minor of the

element of the h th row and lth column of the matrix M.

The relationship between S,J and S1 is given by (27b). So



740 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 4, APRIL 1989

all the scattering parameters of the three-port network

under test have been obtained.

At first glance, it seems that the measurement of the

three-port network requires four steps under ten switch

states as above. In reality this is not the case. There are

only three switches in the TSPNA, which can be expressed

by a three-figure numeral in the binary system: O denotes

the switch open, 1 denotes the switch closed. Except for

000, a three-figure numeral in the binary system expresses

seven numerals at most; that is, all the scattering parame-

ters of the three-port network can be obtained by measur-

ing it under the seven switch states from the 48 power

readings obtained.

In fact, the TSPNA is a universal six-port network

analyzer (USPNA). It obviously has the functions of the

SSPNA and the DSPNA and can measure a variety of

microwave multiport networks. For example, in measuring

four-port networks, only a load with an accurately known

reflection coefficient of r~ is needed, but the r~ is not

required to be a special value; thus this method is very

convenient. To measure an N-port network, (n – 3) loads

with accurately known reflection coefficients are needed,

where n >3. The number of necessary connections can be

reduced by using a TSPNA when n = 3, 4, as shown in

Table II.

V. ERROR ANALYSIS

The simplicity of the ROM method lies in the ideal

isolators used in the system. It is difficult to realize ideal

isolation. The S12 of the isolators does not always equal

zero. The errors brought by nonideal isolation must be

discussed.

The structure of the TSPNA is symmetrical, so we can

discuss one branch as an example. The circuit between

reference plane i and switch K, can be equivalent to the

one shown in Fig. 4, where S ‘pi denotes the scattering

parameters of the two-port network which is composed of

the six-port Spl and its four power meters. S’ denotes the

scattering parameters of a practical isolator. 2$ is the

source impedance seen looking into the divider from switch

Ki. r are the reflection coefficients seen looking into the

switch K, and the power divider D from isolator 1,.

Switchover of the switch K, will be the cause of changes in

r and b,/a,. It is easy to find that b, /ar is

b,/a, = SffI + I’CF (29a)

where

l+AI
F=

1–ACI

r
A=

1 – s~zr

(29b)

(29c)

(29d)

Fig. 4 The equivalent circuit between reference plane i and switch K,.

m’ /

Y / I 1

10-3 10
-2

10-’
1 I 10

Fig, 5. The relationships between A F, A ~, and I

A is a factor which describes the state of the switch; C is a

factor which describes the matching situation between

six-port sp, and isolator 1,; 1 is the isolation factor of the

isolator and 1’ is similarly the isolation factor of the

six-port Spl; and F is an error factor. For the ideal isolator

I= Oand F=l and we have

(30)

Equation (30) does not include the factor A, and 17, is

always a constant, regardless of the state of switch K,. For

nonideal isolator 1 # O and F #1, switchover of switch K,

will affect the value of r,. The more F deviates from unity,

the greater the error. When K, is closed, r = O; when K, is

open, r =1. The change in the error factor between the

two switch states is

AI(1 + C)
F= Fr=l– Fr=O=

1–ACI
(31)

where A = A(r =1). From (29) the error of 17Zis

AI’, = I’CF. (32)

Thus the measuring errors in the scattering parameters

caused by nonideal isolation can be calculated.

Usually =1, C = O, and AF= 1, so that Arl = 11’C.

It is evident that there are three causes which affect A I’,:

isolation factors of the isolator and of the six-port, and the

matching situation C between the six-port and the isolator.

The more 1, 1’, and C approach zero, the smaller AI’,
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becomes. The relationships between AF, Art, and I are

given in Fig. 5, where we have assumed that S~l = S~2= 0.1,

S~~ = Sj~ = 0.1, and 1’=1.

On the other hand, the six-port network has some isola-

tion effect like the isolator, and it must be considered in

the design of the TSPNA. The changes of CJCl and

C3/Cl caused by nonideal isolation can be analyzed by the

same method used above, and should produce the same

conclusions.

VI. CONCLUSIONS

To realize the universal six-port network analyzer

(USPNA) we have first discussed the general theory of

measuring multiport networks, and suggested the ROM

method for measuring microwave networks. All formulas

for calibrating and measuring TSPNA given above are

linear ones without any ambiguity, avoiding the inverse

operation required by renormalization transforms. The

analyses show that the TSPNA is a USPNA; it can directly

measure one-, two-, and three-port networks. It can also

measure multiport networks with (n – 3) known loads by

the ROM method, reducing the number of connections.

TSPNA should be the goal sought in designing six-port

network analyzers.

The ROM method greatly simplifies the procedures of

measuring multiport networks. The calibration and mea-

surement of the system described above are very simple

and do not require any standard three-port network. The

simplicity of the ROM method lies in the ideal isolators

used in the system. In practice, we cannot realize ideal

isolation, and nonideal isolation will incur some errors.

The error analysis shows that the isolation property of the

isolator can be characterized by an isolation factor 1, and

that we should realize as accurately as possible ideal isola-

tion through elaborate design.

APPENDIX

From (3) we have

‘kszkskJ = (S};) – $)(1 – ‘kskk). (Al)

By retaining the constant k and exchanging subscripts i

and j of the scattering parameters in (Al), we get another

equation:

rks,ksk, = (s~) – s,, )(1 – rk~kk). (A2)

Multiplying both sides of (Al) and (A2), respectively, we

have

‘,$szkskt” ‘Iksk,

=(1 - rkskk)’(sj;) - S,J)(s}:)- s,,)

=(1 - rkskk)’(sj:)sp + S,,s,l- s:; W,,- sps,,).

Dividing the above equation by (1 – 17kSkk)2 yields

rksikskl r~sik~~j

1– rkskk - 1– r~~~

= S!k)s(k) + SijSji – Sjj)S’l – $?S,j. (A3)
EJ’ J1

Because

rhs,kskl
F rkskk

= s:k~– s,,

(A3) becomes

(s@) - Sll)(sy) - $,)11

= s(k)s(k) + SiJSJ, – s~~)sjl – s~~)sij
EJ JL

that is,

s(k)s + s],kwlJ
~J Jz

= S);lsy + s,),, – (Sy – s{,) (s:) – SJJ).
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