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Measurement and Calibration of a Universal
Six-Port Network Analyzer

WEIGAN LIN, SENIOR MEMBER, IEEE, AND CHENGLI RUAN, MEMBER, IEEE

Abstract —A general theory of measuring multiport networks is pre-
sented in this paper. In order to measure microwave multiport networks
conveniently a method involving the stepwise reduction of the order of the
network under test is suggested. All formulas for calibrating and measuring
the triple six-port network analyzer (TSPNA), which is a universal six-port
network analyzer, are given without any ambiguity. The procedures for
calibration and measurement are very simple. No standard three-port
network is needed to calibrate the six-port system. Finally, the error
caused by nonideal isolation is discussed.

I. INTRODUCTION

INCE THE six-port theory presented by Hoer and
SEngen [11, [2], in 1972, microwave measurement theory
and techniques have made great progress. With the devel-
opment of computer-aided measurement, microwave mea-
surement techniques have become more accurate. A dual
six-port network analyzer (DSPNA) was proposed by Hoer
[3] in 1977. Since then many scholars [4]-[6] have been
engaged in the calibration of the DSPNA and the measure-
ment of two-port networks, and the calibration of the
DSPNA has been greatly improved.

In the field of microwave techniques a great variety of
microwave multiport networks are used. How to measure
all the scattering parameters of a multiport network is a
problem encountered in our research.

The single-port network can be measured with a single
six-port network analyzer (SSPNA), and a two-port net-
work with a DSPNA. Can we measure a multiport network
with a multi-six-port network analyzer (MSPNA)? Further,
is there a universal six-port network analyzer (USPNA)
which can be conveniently used to measure a variety of
microwave networks? Li [7] has suggested an isolated
N-six-port network analyzer (INSPNA). Speciale has de-
veloped a method for determining the nXn complex
scattering matrix of a multiport network in a single mea-
-surement [8]. This method requires an unconventional type
of multiport network analyzer. A more conventional
method of performing such measurements on a two-port
automated network analyzer requires perfecting matched
loads of (n —2). This requirement cannot be met in prac-
tice with sufficient accuracy. A rigorous technique for
measuring the scattering matrix of a multiport network
with a two-port network analyzer was described in [9]. The
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key to calibrating measurements of the scattering matrix of
multiport networks with a two-port network analyzer is the
renormalization transforms of the scattering parameters.
The renormalization transforms were originally derived by
Woods for networks with up to six ports [10]-]12]. A
generalized form of the renormalization transform was
given in [13]. Dropkin simplified the transform and pointed
out that in some cases the inverse required by the trans-
form may not even exist [14].

In this paper a general theory of measuring multiport
networks is presented and a method of reducing the order
of the network under test step by step (ROM) is suggested
for measuring microwave multiport networks conveniently.

All associated equations are linearized without any am-
biguity. The calibration and measurement of the triple
six-port network analyzer (TSPNA) are discussed in detail,
and it is shown that the TSPNA is a USPNA. Using the
ROM method with the TSPNA one can measure all the
scattering parameters of any multiport network, thereby
avoiding inverse operations and saving connection time
when n =3, 4.

It is assumed that all the isolators used in the DSPNA
and TSPNA discussed in the following (see Figs. 2 and 3)
are ideal ones. Nonideal isolators used in the six-port
system will introduce errors. The isolation property of a
nonideal isolator can be described by an isolation factor
I=S5,,85,,/8,;- The relationship between the error factor
and the isolation factor is given.

II. GENERAL THEORY

An N-port network can be characterized by an »n X n
scattering matrix, that is,
b=Sa (1)

where b is a reflected wave column matrix, a is an
incident wave column matrix, and S is an »# X n scattering
matrix. Assuming that a load with a reflection coefficient
of &k is connected to the kth port of the N-port network,
the N-port network and the load become an (N — 1)-port
network®), the superscript k denoting the elimination of
the kth port of the N-port network. By substituting the

relation

a,=T.b, (2)
into (1), the n X n matrix S is reduced to an (n—1)X
(n—1) matrix S©. The matrix S is obtained by elimi-
nating the kth row and kth column of the matrix S and
substituting the element S° for the element S, , of the
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Fig. 1. An N-port network becomes an (N —1)-port network by elimi-

nating the kth port of the N-port network.

matrix S. The relationship between Si(jk) and S, is

I‘kSszk/

SO =8 +———L i j k=12,
17 iy 1—- Skkrk L J n

i, j#k. (3)
In order to affirm the relationships between elements of
the two matrices S and S, the subscripts of S are not
changed.

An N-port network can construct » different (N —1)-
port networks by eliminating one of the n ports of the
network by means of the method described above. For a
single k, (3) denotes (n—1)> S{¥s; when k equals
1,2,---, n successively; (3) denotes n(n-1)>SPs. If all
scattenng parameters of (N —1)-port networks formed by
the N-port network are found, all scattering parameters of
the N-port network can be obtained from (3) in principle.
(It will be seen that the scattering parameters of the

AdSr = Bd
S, = (rlsll’ [,85,- -, rnSnn)t
(1,59 -T,s®
G)—'I} SO
B,=
TS5 - s
1-T,80 —1+T,82
0 1-T,89
Ad —= ce
0 0
-1+T,8® 0

-1+ 1,88
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N-port network cannot be found by the ROM method
when n < 3.)

The first step is to solve for diagonal elements of the
matrix S. Connecting a load with a reflection coefficient of
T, at the kth port of the N-port network, thus eliminating
the kth port, we make the N-port network become an
(N —1)-port network¥? (Fig 1). At the ith port, i # k, (3)
becomes
FkStkSkz
— T (4)
1- STy
Similarly, eliminating the ith port we obtain an (N —1)-
port network ("), And at the kth port,

FlSlelk

1-8,T°

From (4) and (5), S,,S,, is found to be
SitcSp, = (S;(zk) - Su')(l ~ SuLi)/ T

= (S = S )= 8,L)/T.
From the last equation of (6) we obtain

S =g + ik

SR =S+

(5)

(6)

(1 - Fzsz(zk))rkskk - (1 - rkSIE;c))FISu - rkS(l) - I‘St(ik)’

i k=1,2,-,n i*k (7)

where T,, I, are reflection coefficients of two known loads.
S and S are the diagonal scattering parameters of
both the (N —1)-port network® and the network®, re-
spectively. Because S{? and S are known by measure-
ment, (7) represents a set of linear equations of the diago-
nal elements of the scattering matrix S of the N-port
network. The number of equations in (7) is only 1n(n —1),
when i and k vary from 1 to n, respectively. The number
of diagonal elements in the N-port network is n when

in(n—1) > n; that is, when n > 3m all diagonal elements
of the matrix S can be found from (7).

When n > 3 the number of equations in (7) is more than
that of the diagonal elements. The surplus equations are
not independent. For the sake of convenience, making k
and i equal 1 and 2, 2 and 3,- - -, n and 1, respectively and
successively, we obtain n equations altogether. Writing the
equations in matrix form, we have

(3a)
(8b)

(8¢)

0

(8d)
s 1 + r 1 n-—1
1- 1‘151(;0
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TABLE 1
Number of ports 2 3 4 5 6 n NOTE
Number of whole
equations 2 12 36 80 150 n(n—1)* Eq. (3)
Number of S, 2 3 4 5 6 H Diagonal
elements
Number of equations
for Sy, * 3 6 10 15 La(n=1) Eq. (7)
Number of S, s
(# g 2 6 12 20 30 n(n —1) Nondiagonal
elements
Number of equations
for S, 0* 3* 12 30 60 In(n—1)(n-2) Eq. (10)

The asterisk indicates that the number of equations is less than that of the

unknown S, .

Equation (8) comprises a set of linear equations of the
diagonal elements. Using Cramer’s rule Sy, is found to be

Six= ZBdJ ai/det A, k=12,---,n (3e)

ij

where ¢ denotes the transpose operation, B, is an element
of the column matrix B, and A4, is an algebraic comple-
mentary minor of the element of the jth row and the kth
column of the matrix 4.

The second step is to solve for the nondiagonal elements
of the matrix S. Substituting (8¢) into (3) we obtain a
product, S,.S,,, of a couple of nondiagonal elements. The
number of all products is 1n(n —1). We have used n(n —1)
equations in solving (8) for the diagonal elements of the
matrix S, so there are n(n —1)(n —2) equations remaining
on nondiagional elements. Using (3) we can transform the
n(n —1)(n —2) equations into linear ones.

From (3) we have

0SS, = (S¥ =5, )A-T,8),  k=#i,j. (9)
By retaining the constant k and exchanging subscripts i
and j of the scattering parameters in (9), we get another
equation (see the Appendix). Multiplying both sides of the

equation obtained by (9), respectively, we have

S(k)S + S(k)S _S(k)S(k) +9 S

1 1]
—(SP -8, )(S,(f’—
i, j*k.

Sjj)’
i, j=1,2,---.n, i#J; (10)
Equation (10) represents a set of linear equations of the
nondiagonal elements of the matrix S. The matrix S has
n(n —1) nondiagonal elements. The number of equations
given by (10) is $n(n —1)(n —2), when sn(n —1)(n—2) >
n(n —1); that is, when n > 4, all the nondiagonal elements
of the matrix S can be found.

Since (10) is symmetrical, S,, and S, can be found in
couplet. Substituting % in (10) for k, we have

SS,, + SS, = SUS + 5,8,

- (Sz(rh) - Sn)(Sj(Jh) - S )’

JJ

i, j=120 - nii#jii, j*h. (11)

When & # k, from (10) and (11) §,, and S, are found to
be

k (k
El(j ) S” )
El(jh) Sl(Jh)
Sy = (ky 3 (122)
S8y
(1) (h)
Sﬂ' S,
(k) (k)
S EY
h
Sj(l ) El(fl)
S,= (12b)
S.(k) S(k)
Jt 1
() (n
Sﬂ Sij
EW =5Ms—8 5, (S0 -8,)(S® -5 ) (12¢)
EN=SWs® -8, s (S-S5, )(sP~s),
i, j=1,2,--,n; i#j; i,j+k+*h. (12d)

For convenient calculation, we usually select i < j, k=
k+1=j+2 When i>3, j>n—1, k—n substitutes for
k, and h~n for £, When determining S, , ; and S, _;,
we select k=n, h=2; for §; , and S, ;. select k =2 and
h=3; for 8, , , and S, ,,, select k=n and h=1; for
S, . and S, 2, select k=1 and A =3. Thus S}, and S,,.

S50, 8, and Sy, Sy and Sy, S, and S, through
S,-1,.and S, , ; can be found successively.

In the process of solving the diagonal and nondiagonal
elements of the matrix S, we can see that there is not
always a definite solution for any integer n. The relation-
ships between the number of network ports, the number
of unknown S, , and the number of equations on S,
are given in Table I. From this table we can see that
the number of linear equations of diagonal elements is
in(n —1), and the number of linear equations of nondiag-
onal elements is n(n—1)(n ~2) altogether they are
1n(n—1)% When in(n—1)? > n?, all elements of the ma-
trix S can be found by the ROM method, and there is no
ambiguity. For example, when n = 4 the four-port network
will be reduced to three triple-port networks to be mea-
sured, provided all scattering parameters of the three
triple-port networks have been found. The scattering pa-
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Fig. 2. A scheme of DSPNA.

rameters of the four-port network will be obtained from
(7) and (10).

Multiport networks with more than four ports can be
measured by reducing them step by step to three-port
networks. From Table I, however, we can see that the
number of equation for S, is 1 when n=2, but the
number of unknown S,,’s is 2; the number of equations
for §,, is 0, but the number of unknown S, ’s is 2; the
number of equations for S,, is the same as the unknown
Si.’s when n =3, but the number of equations for S,
(i # j) is just half that of the unknown S, ’s. So two-port
and three port networks cannot be measured by the ROM
method. The measurements of two-port networks and
three-port networks will be discussed below.

III. CALIBRATION AND MEASUREMENT OF DSPNA

A scheme of the DSPNA is shown in Fig. 2. The
DSPNA is composed of a divider, switches, attenuators,
isolators, matching loads, and six-port networks. The two-
port network under test with scattering parameters S, ,
i, j=1,2, is connected at reference planes 1 and 2. T'; and
T, are the reflection coefficients seen in the six-ports sp;
and sp, from reference planes 1 and 2, respectively, and ¢,
and ¢, are the incident waves coming into the two-port
network under test from the source. I, I, and the ratio of
¢, to ¢, are system constants.

Here sp, and sp, are two six-port networks being cali-
brated. For the method of calibrating six-port networks,
see [15]. Here we shall discuss only the calibration of the
DSPNA system.

The signal coming from the source is divided into two
parts and comes into the right and left branches of the
DSPNA, respectively.

The two branches are symmetrical in structure. The
attenuators are used for limiting the power so as not to
exceed the dynamic range of the power meters of the
six-ports. The isolators are ideal, which guarantees that (i)
regardless of the state the switch K, is in, the reflection
coefficient T, seen in the six-port sp, from the reference
plane i will always be a constant and (ii) regardless of
which unknown two-port network is connected at refer-
ence planes 1 and 2, the ratio of ¢, to ¢; will always be a
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constant [16]. The following equations are derived follow-
ing the method in the literature [16].

When switch K, connects with attenuator A, (making
the six-port sp, connect directly with the source, called
switch K, closed), whereas switch K, connects with the
matching load (making sp, open with the source, called K,
open), the reflection coefficient I';, which is measured by
sp; is

rlp = (Su - FzA)/(l - I‘zszz)
A=5118% = S155- (13)
When K, is open and K, closed, the reflection coefficient
T, , measured by sp, is
L, =(8n- FlA)/(l‘ [18)). (14)

When K, and K, are both closed, the reflection coeffi-
cients measured by the two six-ports are denoted by the
subscript @, e.g. I}, and I,,. From the superposition
theorem they are

r - Sii— LA+ 86 /¢
14 [181565 /¢ = 1585

r - Sy — 1A+ Sy¢1/¢y
1+ LSue /e, — TSy .

(15)

(16)

Using (13)-(16), the system constants of the DSPNA can
be calibrated. The calibration steps are as follows.

First, the measurement port of sp, connects directly with
that of sp,, that is, a transmission line of zero length (or a
line with arbitrary length, thus the formulas will be slightly
different), as a standard two-port network is connected at
reference planes 1 and 2. When K, is closed 'and K, open,
I}, is measured by sp, from (13), that is,

Iy,=I. (17)

Then, when K, is open and K, closed, I’;, is measured
by sp, from (14), that is,

Ty, =T, (18)

Finally. when K, and K, are both closed, Iy, is mea-
sured by sp,; from (15) the ratio of ¢, to ¢; is obtained
(there are eight power readings, but only four of them are
used):

Cz/ct‘_‘(rfa"rz)/(l_rlrfa)~ (19)

Thus under three switch states, the three system constants
T, T, and ¢, /¢, are obtained from 16 power readings.

Next, connect the two ports of the unknown two-port

network with measurement ports of sp; and sp,, respec-

tively. The measurement steps are the same as those of
calibrating a DSPNA:

(1) when K, is closed and K, open, I, is measured by
SP15

(i) when K, is open and K, closed, I, is measured by
SPa;

(iii) when K, and K, are both closed, I', and T, are
measured by sp, and sp,, respectively.
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By substituting I ,, I, ,, I',, and I, into (13)~(16), all
scattering parameters of the two-port network under test
can be determined:

S = (rlp - Fzﬁlﬁz)/ﬁ3 (203)
St =:81(1_ F2F2p)/B3 (2Ob)
Sy = /32(1 - rlrlp)/IBB (20c)
Sp= (Pzp - F1:81:82)/:83 (20d)
_ ﬁ rla - r1p
b ¢; 1-I0I, (20c)
__fz Iaa _.Ibp
P (201)
By=1-LL,B:B,. (20g)

In the measurement process it is not necessary to change
the direction of the two-port network under test. In three
switch states, 16 power readings are obtained and all S, i
J=1,2, are determined. The procedures for calibration and
measurement are very simple.

IV. CALIBRATION AND MEASUREMENT OF TSPNA

In order to find all the scattering parameters of an
unknown three-port network, a TSPNA can be used. The
TSPNA system is shown in Fig. 3. Compared with the
DSPNA, the TSPNA has just three branches, each of
which has the same structure as the two branches of the
DSPNA. The associated devices have the same function as
in the DSPNA. The difference is that the TSPNA has a
three-branch divider.

The unknown three-port network is connected at refer-
ence planes 1, 2, and 3. T3, I, T}, ¢, ¢,, and ¢; are
system constants with the same definitions as in Section
III. The isolators are ideal, so T}, T, and I'; do not change
when switches change over, and the ratios of ¢, and ¢, to
¢, tremain constant when the properties of the network
under test change. The calibration steps are as follows.

First, the measurement port of sp, is directly connected
to that of sp,, so sp; and sp, constitute a DSPNA. Accord-
ing to the calibration method of the DSPNA as described
in Section III, I', T, and ¢, /¢; can be obtained.

Then, let the measurement port of sp; be directly con-
nected to that of sp;; as described above, Iy and ¢, /¢; can
be obtained. Because the isolators used in the TSPNA are
ideal, the TSPNA has only five system constants. By
directly connecting sp, to sp, and sp,, respectively, and
measuring under five switch states, 20 power readings are
obtained and the five system constants can be found from
(13)—(19). The calibration procedure is very simple, and no
standard three-port network is needed to calibrate the
system constants.

The measurement steps of three-port networks are as
follows. After successively calibrating the three six-ports
SPy1, SP,, Sp;, and finding the five system constants, we
connect the unknown three-port network to the TSPNA,
e.g. connect the three ports of the unknown network to the
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Fig. 3. A scheme of TSPNA.

associated three measurement ports of the TSPNA. First,
we measure the three-port network according to the ROM
method.

1) Let K, and K, be closed, and K, open. The first port
of the three-port network under test equals the connection
of a load with the reflection coefficient of I'} (which is
composed of attenuator A, isolator I,, and six-port sp,).
The three-port network and the load (I))) constitute a
two-port network [1] which is measured by a DSPNA
composed of six-ports sp, and sp;. From (20) S$3,- - -, S{
can be obtained. The subscripts of each quantity in (20)
should be suitably substituted.

2) Let K, and K, be closed, and K, open. The second
port of the three-port network is equal to the connection of
a load with the reflection coefficient of T, (which is
composed of A,, I, and sp,) and it is measured by a
DSPNA composed of sp; and sp;. Then S{P,-- -, S can
be obtained.

3) Similarly, let K, and K, be closed, and K, open.
S, -+, S can be found by sp, and sp,.

So far 12 scattering parameters SI(J"'), i, j, k=1,2,3 and
i, j#k, have been obtained. From (8) the diagonal ele-
ments S;;, S5, and S;; can be found. Equation (10) gives
three linear equations for the nondiagonal elements S, o
i # j, as follows:

S5S1 + 858y = SESH + 51,81

—(S8 = Su)(S2 - 5,) (21a)
539813+ 538y = SPSP + 81,85,

- (S3(32) - S33)(S1(? - Sll) (21b)
S8y + 8585, = 385 + 85385,

- (Sz(%) - Szz)(S3(3l) - S33)- (21c)

In order to find the solutions to (21) without any ambigu-
ity, we must measure once more to find another three
linear equations for the nondiagonal elements.

4) Let Ky, K,, and K, all be closed. Then sp,, sp,, and
sp; constitute a complete TSPNA. Each six-port yields a
reflection coefficient, denoted by the subscript a; that is,
I}, is measured by sp;, I, by sp,, and T, by sp;. Set

[,=b/a, i=1,2,3. (22)
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Substituting (22) into (1), we have

(Sll_rla)a1+S12a2+S13a3=0 (23a)
Sya,+ (Szz - r2a) a,+Sya;=0 (23b)
Sy + Sppay + (83— Ty, ) a; =0 (23c)

where a;, a,, and a, are the results of ¢, ¢,, and ¢,
together and can be found with the superposition theorem.

Using a signal flow graph for the three-port network
under test at the connected three references of the TSPNA,
a,, a,, and a, can be easily found from the signal flow
graph to be

ay=¢;(1= (ST, + Sy T3 + DI85, ) + LI5S, S85)
+ CZ(Sl2rl(1 - S;05) + I‘1113513S32)
+ 03(513r1(1 =Syl + I‘1F2S12823)
ay=c;(Sul(1- SyT) + T,0585383)
+ e, (1= (Sl + Syl + D1 181385,) + [\158,,853)
+ c3(S23F2(1 - 8)+ I11112*913521) (24b)
ay=c;(Sy(1- 8pT,) + I‘2I‘3S21532)
+ e (S5 5(1—SyTy) + [\0581,85)
+ 03(1 = (Sl + 8,1 + TS, Sy ) + I‘1I‘2S11(*S'22))
24c

(24a)

where the graph determinant is neglected, because it will
be eliminated in the following operation. Substituting (24)
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TABLE II
Number of ports 3 4 5
Number of connections
Two-port network anatyzer 3 6 10
ROM 1 4 10
where
Ry =Ty, = Sp) (1= ST, — 85Ty
+ F2]73(S22S33 - S23S32)) '
= (1= T, I) (1~ 853T5) S0y /)
— (1= Ty, T) (1= 8p1)Sey /ey (26a)
R,=(T,,— Szz)(l = Sy = S350
+ I‘1]13(511S33 o SlBS31))
= (1= 1, 1) (1= 8S33T3) SPey /ey
— (1= T, 1) (1 - Siuly) S5es /s (26b)
Ry=(T5,— S33)(1 =Syl = 8,15
+ I (81,85, — S128x))
~(1=T3,T5) (1= 85,1,) SiPey /s
—(1- D, T) (A= Sulh)SHey /cs. (2§C)

Combining (21) and (25) and writing them in matrix form,
we have

MS‘ =N (27a)
S¢= (Slz» S135 215 $235 S31 S32)t = (Sh 85,83, 84, 85, Sé)t (27b)
N= (Pl’ Py, Py, Ry, Ry, R3)t = (Np N,, N3, Ny, N, Ne)t (27¢)
P, =SPSH + 8128y — (SS) - SH)(SS’) - 522) (27d)
Pz = Sl(?ss(%) + S13831 - (Sg) - Su)(S3(32) - S33) (276)
P3 = Sﬁ)Sg) + Sz3S32 - (Sz(%) - Szz)(Sg) - S33) (27f)
s 0 RYE S0 0 0 |
0 S 0 0 52 0
0 0 0 b 0 S
M= 2 = (27g)
(1 - S33I‘3) FZSZ(%) (1 - SZ2F2) 1—‘3‘5‘3(12) 0 O 0 0
O 0 (l - S33r3)rlsl(g) (1 - Sllrl) FBSB(.%) 0 0
L 0 0 0 0 (1- Szzrz) Flsg) (1- S11r1)r2S:g) |

Using Cramer’s rule from (27) we have

into (23), we find another three linear equations for the
nondiagonal elements:

(1— 83T5) DS9S, + (1- Sy 13SPS 1, = Ry (252)
(1 - 533F3) rlsfg)szl + (1 - Sllrl) T3S§%)S23 =R, (25b)
(1 - Szzrz) Flsl(%)sﬂ + (1 - 511r1) Fzsz(%)ssz =R, (250)

6
S,= Y N,M,/det M,
h=1

I=1,2,--+,6  (28)

where M,, is an algebraic complementary minor of the
element of the Ath row and /th column of the matrix M.
The relationship between S, and S; is given by (27b). So
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all the scattering parameters of the three-port network
under test have been obtained.

At first glance, it seems that the measurement of the
three-port network requires four steps under ten switch
states as above. In reality this is not the case. There are
only three switches in the TSPNA, which can be expressed
by a three-figure numeral in the binary system: 0 denotes
the switch open, 1 denotes the switch closed. Except for
000, a three-figure numeral in the binary system expresses
seven numerals at most; that is, all the scattering parame-
ters of the three-port network can be obtained by measur-
ing it under the seven switch states from the 48 power
readings obtained.

In fact, the TSPNA is a universal six-port network
analyzer (USPNA). It obviously has the functions of the
SSPNA and the DSPNA and can measure a variety of
microwave multiport networks. For example, in measuring
four-port networks, only a load with an accurately known
reflection coefficient of I', is needed, but the I', is not
required to be a special value; thus this method is very
convenient. To measure an N-port network, (n —3) loads
with accurately known reflection coefficients are needed,
where n > 3. The number of necessary connections can be
reduced by using a TSPNA when n =3, 4, as shown in
Table II.

V. ERROR ANALYSIS

The simplicity of the ROM method lies in the ideal
isolators used in the system. It is difficult to realize ideal
isolation. The S, of the isolators does not always equal
zero. The errors brought by nonideal isolation must be
discussed.

The structure of the TSPNA is symmetrical, so we can
discuss one branch as an example. The circuit between
reference plane i and switch K, can be equivalent to the
one shown in Fig. 4, where S* denotes the scattering
parameters of the two-port network which is composed of
the six-port sp, and its four power meters. S’ denotes the
scattering parameters of a practical isolator. Z is the
source impedance seen looking into the divider from switch
K,. T are the reflection coefficients seen looking into the
switch K, and the power divider D from isolator I,.
Switchover of the switch K, will be the cause of changes in
I' and b,/a,. It is easy to find that b, /a, is

b,/a, =S¥ + I'CF (29a)
where
oo Lral 2o
1-ACI (290)
Y L 29
T 1-s,T (29)
NG
11222
=2 29d
1— 51,8 (29d)
I=S85,5,/Sh (29)
I'= 858k /St (29f)
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Fig. 4 The equivalent circuit between reference plane i and switch X,.

n L Il

1
= - - 0
103 102 101 Tl L

Fig. 5. The relationships between AF, AF,, and 1

A is a factor which describes the state of the switch; C is a
factor which describes the matching situation between
six-port sp, and isolator I; I is the isolation factor of the
isolator and I’ is similarly the isolation factor of the
six-port sp,; and F is an error factor. For the ideal isolator
I=0and F=1 and we have

(30)

1

I= él— =8P+ I'C.

al
Equation (30) does not include the factor 4, and T, is
always a constant, regardless of the state of switch K,. For
nonideal isolator I # 0 and F #1, switchover of switch K,
will affect the value of I,. The more F deviates from unity,
the greater the error. When K, is closed, I' = 0; when K, is
open, I'=1. The change in the error factor between the
two switch states is

F:Fr—l"Fr—ozA_I(_H—C) (31)
- - 1—4CI
where 4= A(T =1). From (29) the error of T is
AT, =I'CF. (32)

Thus the measuring errors in the scattering parameters
caused by nonideal isolation can be calculated.

Usually 4(I') =1, C =0, and AF = I, so that AT, = IT'C.
It is evident that there are three causes which affect AT :
isolation factors of the isolator and of the six-port, and the
matching situation C between the six-port and the isolator.
The more I, I’, and C approach zero, the smaller AT .
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becomes. The relationships between AF, AL, and I are
given in Fig. 5, where we have assumed that S, = S5, =0.1,
S =8%=01, and I'=1.

On the other hand, the six-port network has some isola-
tion effect like the isolator, and it must be considered in
the design of the TSPNA. The changes of C,/C; and
G, /C, caused by nonideal isolation can be analyzed by the
same method used above, and should produce the same
conclusions.

VL

To realize the universal six-port network analyzer
(USPNA) we have first discussed the general theory of
measuring multiport networks, and suggested the ROM
method for measuring microwave networks. All formulas
for calibrating and measuring TSPNA given above are
linear ones without any ambiguity, avoiding the inverse
operation required by renormalization transforms. The
analyses show that the TSPNA is a USPNA,; it can directly
measure one-, two-, and three-port networks. It can also
measure multiport networks with (n —3) known loads by
the ROM method, reducing the number of connections.
TSPNA should be the goal sought in designing six-port
network analyzers.

The ROM method greatly simplifies the procedures of
measuring multiport networks. The calibration and mea-
surement of the system described above are very simple
and do not require any standard three-port network. The
simplicity of the ROM method lies in the ideal isolators
used in the system. In practice, we cannot realize ideal
isolation, and nonideal isolation will incur some errors.
The error analysis shows that the isolation property of the
isolator can be characterized by an isolation factor I, and
that we should realize as accurately as possible ideal isola-
tion through elaborate design.

CONCLUSIONS

APPENDIX

From (3) we have

T84S, = (S® =8, )1~ T,8,.)- (A1)

LY
By retaining the constant k and exchanging subscripts i

and j of the scattering parameters in (Al), we get another
equation:
FijkSkl = (S,(zk) - sz)(l - FkSkk)' (A2)

Multiplying both sides of (A1) and (A2), respectively, we
have

I‘kZStkSkt'Sijkj
=(1-T,8,.)°(s® -5, ) (5P -5,)

Jt

2
= (1 - FkSkk) (St(k)S/(tk) + Slijl - St(Jk)Sjt - Sj(lk)Slj) .
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Dividing the above equation by (1- T, S,,)? yields
LSSk, ) LSSy
1-I,S, 1-I.8.

— Qlk)g(k) — olk _ Qlk
=S8 +8,8;,— S{PS, — 8PS, . (A3)

ij=ji ij

Because

E_ﬂ‘i - S:(:k) -8,
1--T.S,.,

(A3) becomes
(k) _ k)
(582-5,)(s5-,)
= S,(jk)Sj(,k) +S,S

i

k k
Ss, — SIS,
that is,
S k S v (k S
IS ) jl+‘5’j(l ) 1y

=S80 +5,8, - (519 =5,)(8{" - 8, ).
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